复合养殖系统中浮游植物群落结构及其与水环境因子的关系
Phytoplankton Community Structure and Its Relationship to Water Quality Parameters in a Compound Aquaculture System
投稿时间:2015-05-30  修订日期:2015-08-04
DOI:10.15928/j.1674-3075.2015.05.013
中文关键词:复合养殖池塘  浮游植物  环境因子  冗余分析
英文关键词:integrated aquaculture pond  phytoplankton  environmental factors  redundancy analysis
基金项目:“十二?五”国家科技支撑计划项目(2012BAD25B07);中央级公益性科研院所基本科研业务费专项(2015JBFM24);国家大宗淡水鱼类产业技术体系项目(nyeytx-46)
作者单位E-mail
王璐 南京农业大学无锡渔业学院江苏 无锡 214081 wl1036880676@163.com 
李冰 中国水产科学研究院淡水渔业研究中心 农业部淡水渔业和种质资源利用重点实验室江苏 无锡 214081  
孙盛明 中国水产科学研究院淡水渔业研究中心 农业部淡水渔业和种质资源利用重点实验室江苏 无锡 214081  
王 林 南京农业大学无锡渔业学院江苏 无锡 214081  
张明明 南京农业大学无锡渔业学院江苏 无锡 214081  
朱 健* 南京农业大学无锡渔业学院江苏 无锡 214081 中国水产科学研究院淡水渔业研究中心 农业部淡水渔业和种质资源利用重点实验室江苏 无锡 214081 zhuj@ffrc.cn 
摘要点击次数: 4399
全文下载次数: 3557
中文摘要:
      以主养团头鲂(Megalobrama amblycephala)搭配少量鲢(Hypophthalmichthys molitrix)、鳙(Aristichthy nobilis)的人工湿地-池塘复合养殖系统为研究对象,2014年8-11月在人工湿地运行期间调查了该复合养殖系统池塘中浮游植物的生态特征,并通过冗余分析(RDA)方法探究了浮游植物群落结构与水环境因子的关系。结果表明,复合养殖池塘中共鉴定出硅藻(Bacillariophyta)、绿藻(Chlorophyta)、蓝藻(Cyanophyta)、隐藻(Cryptophyta)、裸藻(Euglenophyta)、金藻(Chrysophyta)、黄藻(Xanthophyta)、甲藻(Pyrrophyta)共8门、91种(包括变种和变型),其中绿藻种类最多,共53种,占浮游植物总种类数的58.24%;而蓝藻密度占绝对优势,占浮游植物总密度的79.82%。人工湿地运行期间养殖池塘中浮游植物的种类、密度、生物量无显著变化,其密度变化范围为1.09×109~1.83×109 个/L,均值为1.52×109 个/L;生物量变化范围为8.76~11.03 mg/L,均值为9.80 mg/L;浮游植物主要优势种共计10种,包括绿藻门的双对栅藻(Scenedesmus bijuga)、四足十字藻(Crucigenia tetrapedia)、苇氏藻(Westella botryoides),蓝藻门的微小平裂藻(Merismopedia tenuissima)、点形粘球藻(Gloeocapsa punctata)、泥污颤藻(Oscillatoria limosa)、优美平裂藻(Merismopedia elegans)、微小色球藻(Chroococcus minutus)、为首螺旋藻(Spirulina princeps)、不定微囊藻(Microcystis incerta);池塘的Shannon-Wiener多样性指数为2.77~3.27,Margalef多样性指数为2.75~3.18,Pielou均匀性指数为0.45~0.55,说明养殖池塘中浮游植物群落结构较为稳定。浮游植物种类丰度与水环境因子的冗余度分析(RDA)结果表明,池塘中浮游植物种类丰度受到多个环境因子的影响,其中小球藻(Chlorella vulgaris)和四足十字藻等绿藻主要受温度、溶氧、pH的影响,而微小平裂藻和点形粘球藻等蓝藻主要受pH和氨氮的影响。
英文摘要:
      With the development of intensive aquaculture and high-density breeding, the excessive input of forage leads to the deterioration of pond water quality and disease outbreaks occur frequently in the cultured animals. Meanwhile, aquacultural wastewater was being discharged directly into the aquatic environment without treatment. A new, more ecological, culturing method, the integrated pond aquaculture-constructed wetland system, improves the quality of the products while conserving water resources and effectively treating the aquacultural wastewater. In this research, a modern integrated system was studied, consisting of a constructed wetland (0.045 hm2) and a culture pond (0. 33 hm2). In the system, Megalobrama amblycephala fingerlings (33000ind/hm2) with a small number of Hypophthalmichthys molitrix (3750 ind/hm2), Aristichthy nobilis (900 ind/hm2), Carassius auratus gibelio (3750 ind/hm2) and Ctenopharyngodon idellus (150ind/hm2) were mix-cultured in the pond. The wastewater was filtered and purified through the constructed wetland and recirculated back to the pond. The fingerlings were fed on an artificial diet four times daily. The constructed wetland began operation in July, 2014 and the wetland plants were harvested in December. From August to November 2014, we investigated the community structure of phytoplankton in the pond when the constructed wetland was fully functioning. The relationship between phytoplankton community structure and water quality parameters was analyzed by redundancy analysis (RDA).Three sample sites were selected in the culture pond and the water samples were collected near the end of each month for determination of water physicochemical parameters including T, pH, DO, TN, TP, NH3-N and NO2-N. Phytoplankton samples for qualitative analysis were collected with a No.25 plankton net. 1L water samples for quantitative phytoplankton analysis were collected at 0.5 m below the surface using a glass water sampler and 15 mL Lugol’s solution was added. Then the sample was concentrated to 50 mL by settling for 24 h. The phytoplankton qualitative and quantitative analysis were both conducted under an optical microscope. A total of 91 phytoplankton species from 8 phyla were identified in the pond, including Bacillariophyta, Chlorophyta, Cyanophyta, Cryptophyta, Euglenophyta, Chrysophyta, Xanthophyta and Pyrrophyta. Among them, Chlorophyta (53 species) accounted for 58.24% of the total phytoplankton species, with absolute dominance, while the phytoplankton density was dominated by Cyanophyta, accounting for 79.82% of the total phytoplankton density. During the entire study, phytoplankton species composition, density and biomass of the phytoplankton community did not change significantly in the pond. The phytoplankton density varied from 1.09×109 cells/L to 1.83×109 cells/L with an average of 1.52×109 cells/L and the phytoplankton biomass ranged from 8.76 mg/L to 11.03 mg/L with an average of 9.80 mg/L. The phytoplankton community was dominated by ten species including Scenedesmus bijuga, Crucigenia tetrapedia, Westella botryoides from Chlorophyta, and Merismopedia tenuissima, Gloeocapsa punctata, Oscillatoria limosa, Merismopedia elegans, Chroococcus minutus, Spirulina princeps, Microcystis incerta from Cyanophyta. The Shannon-Wiener diversity index, Margalef richness index and Pielou evenness index of the phytoplankton community were in the range of 2.77-3.27, 2.75-3.18, and 0.45-0.55, respectively, indicating that the phytoplankton community structure in the pond was very stable. Redundancy analysis shows that phytoplankton density in the pond was closely related with several environmental variables. Chlorella vulgaris, Crucigenia tetrapedia from Chlorophyta were mainly affected by temperature, dissolved oxygen, and pH, while Merismopedia tenuissima, Gloeocapsa punctata in Cyanophyta were mainly affected by pH and ammonia nitrogen.
王璐,李冰,孙盛明,王 林,张明明,朱 健.2015.复合养殖系统中浮游植物群落结构及其与水环境因子的关系[J].水生态学杂志,36(5):81-88.
查看全文  查看/发表评论  下载PDF阅读器   HTML
Copyright © 2008 《水生态学杂志》编辑部 地址:湖北省武汉市雄楚大街578号 
邮编:430079 电话:027-82926630 E-mail: sstx@mail.ihe.ac.cn  京ICP备09084417号