BP神经网络在太湖不同湖区叶绿素a浓度短期预测的应用初探
Applications of back propagation neural network for Short-term predicting the concentration of chlorophyll-a of different regions in Lake Taihu
投稿时间:2012-06-07  修订日期:2012-08-08
DOI:
中文关键词:人工神经网络  太湖  叶绿素a  短期预测
英文关键词:Artificial neural network  lake Taihu  chlorophyll-a  short-term prediction
基金项目: 江苏省自然科学基金重点项目(BK2010096);环保部环保公益项目科研专项(2010467014);江苏省水产三项工程项目(PJ2011-55);中国科学院院地合作项目(Y1YD11031)
作者单位E-mail
周露洪* 1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室江苏南京 2100082.杭州达康环境工程有限公司浙江杭州 310058 zhouluhong1986@163.com 
摘要点击次数: 2724
全文下载次数: 2867
中文摘要:
      摘要:人工神经网络具有强大的非线性能力,能对复杂的水环境系统中非线性行为进行准确有效地预测。本文选择太湖的梅梁湾和湖心区两个典型湖区为研究对象,分别设置4个和2个采样点。通过对其2006-2008年三年的常规水质监测参数进行主成分分析,选择合适的输入因子及最优的网络参数,建立优化的BP网络模型,以实现叶绿素a浓度的月预测。结果表明,梅梁湾湖区和湖心区的预测值与实测值的平均相对误差分别为71%和39%,两者预测精度均较低,原因与太湖的水动力条件、水文气象及藻型生态系统等因素有关。
英文摘要:
      Abstract:Artificial Neural Network (ANN) has powerful nonlinear capacity, can exactly predicting the non-linear behavior in the water environmental system. This article selected Meiliang Bay and centre of the lake Taihu as study objecys, respectively set four and two sampling spots. We selected appropriate input factors and the optimal network parameters through principal component analysis of water quality monitoring parameters in year 2006-2008, then established optimal BP network model to achieve the monthly predict chlorophyll-a concentration. The results showed that the Meiliang bay and centre of the lake Taihu respectively had average relative error of 71% and 39%, and the possible reason of the poor predicing accuracy was that hydrodynamic conditions and hydrometeorologicalin of Taihu Lake and factors of eco-system of algae.
周露洪.2012.BP神经网络在太湖不同湖区叶绿素a浓度短期预测的应用初探[J].水生态学杂志,33(4):1-6.
查看全文  查看/发表评论  下载PDF阅读器   HTML
Copyright © 2008 《水生态学杂志》编辑部 地址:湖北省武汉市雄楚大街578号 
邮编:430079 电话:027-82926630 E-mail: sstx@mail.ihe.ac.cn  京ICP备09084417号